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Warning: This paper contains a large number of matrix identities which cannot be absorbed
by mere reading. The reader is encouraged to take time and check each equation by hand and
work out the examples. This is advanced material; see Searle (1982) for basic results.

1 Derivatives

Maximum-likelihood problems almost always require derivatives. There are six kinds of deriva-
tives that can be expressed as matrices:

Scalar Vector Matrix

Scalar dy
dx

dy
dx

=
[

∂yi
∂x

]

dY
dx

=
[

∂yij
∂x

]

Vector dy
dx

=
[

∂y
∂xj

]

dy
dx

=
[

∂yi
∂xj

]

Matrix dy
dX

=
[

∂y
∂xji

]

The partials with respect to the numerator are laid out according to the shape of Y while
the partials with respect to the denominator are laid out according to the transpose of X.
For example, dy/dx is a column vector while dy/dx is a row vector (assuming x and y are
column vectors—otherwise it is flipped). Each of these derivatives can be tediously computed via
partials, but this section shows how they instead can be computed with matrix manipulations.
The material is based on Magnus and Neudecker (1988).

Define the differential dy(x) to be that part of y(x+dx)−y(x) which is linear in dx. Unlike the
classical definition in terms of limits, this definition applies even when x or y are not scalars.
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For example, this equation:

y(x+ dx) = y(x) +Adx+ (higher order terms) (1)

is well-defined for any y satisfying certain continuity properties. The matrix A is the derivative,
as you can check by setting all but one component of dx to zero and making it small. The
matrix A is also called the Jacobian matrix Jx→y. Its transpose is the gradient of y, denoted
∇y. The Jacobian is useful in calculus while the gradient is useful in optimization.

Therefore, the derivative of any expression involving matrices can be computed in two steps:

1. compute the differential

2. massage the result into canonical form

after which the derivative is immediately read off as the coefficient of dx, dx, or dX.

The differential of an expression can be computed by iteratively applying the following rules:

dA = 0 (for constant A) (2)

d(αX) = αdX (3)

d(X+Y) = dX+ dY (4)

d(tr(X)) = tr(dX) (5)

d(XY) = (dX)Y +XdY (6)

d(X⊗Y) = (dX)⊗Y +X⊗ dY (see section 2) (7)

d(X ◦Y) = (dX) ◦Y +X ◦ dY (see section 5) (8)

dX−1 = −X−1(dX)X−1 (9)

d |X| = |X| tr(X−1dX) (10)

d log |X| = tr(X−1dX) (11)

dX⋆ = (dX)⋆ (12)

where ⋆ is any operator that rearranges elements, e.g. transpose, vec, and vec-transpose (sec-
tion 3). The rules can be iteratively applied because of the chain rule, e.g. d(AX + Y) =
d(AX) + dY = AdX + (dA)X + dY = AdX + dY. Most of these rules can be derived by
subtracting F(X+ dX)− F(X) and taking the linear part. For example,

(X+ dX)(Y + dY) = XY + (dX)Y +XdY + (dX)(dY)

from which (6) follows.

To derive dX−1, note that

0 = dI = dX−1X = (dX−1)X+X−1dX
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from which (9) follows.

The next step is to massage the differential into one of the six canonical forms (assuming x and
y are column vectors):

dy = adx dy = adx dY = Adx
dy = adx dy = Adx

dy = tr(AdX)

This is where the operators and identities developed in the following sections are useful. For
example, since the derivative of Y with respect to X cannot be represented by a matrix, it
is customary to use dvec(Y)/dvec(X) instead (vec is defined in section 2). If the purpose of
differentiation is to equate the derivative to zero, then this transformation doesn’t affect the
result. So after expanding the differential, just take vec of both sides and use the identities in
sections 2 and 3 to get it into canonical form.

One particularly helpful identity is:

tr(AB) = tr(BA) (13)

Examples:

d

dX
tr(AXB) = BA (14)

because dtr(AXB) = tr(A(dX)B) = tr(BAdX)

d

dX
tr(AX′BXC) = CAX′B+A′C′X′B′ (15)

because dtr(AX′BXC) = tr(AX′B(dX)C) + tr(A(dX)′BXC)

= tr((CAX′B+A′C′X′B′)dX)

d

dX
tr(AX−1B) = −X−1BAX−1 (16)

because dtr(AX−1B) = −tr(AX−1(dX)X−1B)

= −tr(X−1BAX−1dX)

d

dX
tr(A(XΣX′)−1B) = −ΣX′(XΣX′)−1(BA+A′B′)(XΣX′)−1 (17)

(for symmetric Σ)

because dtr(A(XΣX′)−1B) = −tr(A(XΣX′)−1((dX)ΣX′ +XΣ(dX)′)(XΣX′)−1B)

= −tr(ΣX′(XΣX′)−1(BA+A′B′)(XΣX′)−1dX)

d

dX
|X| = |X|X−1 (18)
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d

dX
|X′X| = 2 |X′X| (X′X)−1X′ (19)

because d |X′X| = |X′X| tr((X′X)−1d(X′X))

= |X′X| tr((X′X)−1(X′dX+ (dX)′X))

= 2 |X′X| tr((X′X)−1X′dX)

d

dX
f(Xz) = z

d

dx
f(x)

∣

∣

∣

∣

x=Xz

(20)

because df(x) = (
d

dx
f(x))dx (by definition)

df(Xz) =
d

dx
f(x)

∣

∣

∣

∣

x=Xz

(dX)z

= tr(z
d

dx
f(x)

∣

∣

∣

∣

x=Xz

dX)

Constraints Sometimes we want to take the derivative of a function whose argument must
be symmetric. In this case, dX must be symmetric, so we get

dy(X) = tr(AdX) ⇒
dy(X)

dX
= (A+A′)− (A ◦ I) (21)

where A ◦ I is simply A with off-diagonal elements set to zero. The reader can check this by
expanding tr(AdX) and merging identical elements of dX. An example of this rule is:

d

dΣ
log |Σ| = 2Σ−1 − (Σ−1 ◦ I) (22)

when Σ must be symmetric. This is usually easier than taking an unconstrained derivative and
then using Lagrange multipliers to enforce symmetry.

Similarly, if X must be diagonal, then so must dX, and we get

dy(X) = tr(AdX) ⇒
dy(X)

dX
= (A ◦ I) (23)

Example: Principal Component Analysis Suppose we want to represent the zero-mean
random vector x as one random variable a times a constant unit vector v. This is useful for
compression or noise removal. Once we choose v, the optimal choice for a is v′x, but what is
the best v? In other words, what v minimizes E[(x− av)′(x− av)], when a is chosen optimally
for each x?

Let Σ = E[xx′]. We want to maximize

f(v) = v′Σv − λ(v′v − 1)
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where λ is a Lagrange multiplier. Taking derivatives gives

∇f(v) = 2Σv − 2λv

so the gradient is zero at any eigenvector of Σ. (Recall that the gradient is the transpose of the
derivative.) If v is an eigenvector then f(v) = λ so the maximum is attained when v has the
largest eigenvalue.

Example: Blind source separation Suppose we have k microphones listening to k over-
lapped sound sources. Can we recover the individual sources? More generally, suppose we’ve
observed data x generated by the function x = A−1u where u is a set of independent hidden
causes and A is an unknown square mixing matrix. Assume each ui is distributed according
to some density fi(wi) with unknown parameter wi. We want to find the mixing matrix which
maximizes the likelihood of the data, so that we can then recover the hidden causes.

p(u|w) =
∏

i

fi(ui|wi) (24)

p(x|A,w) = |A|
∏

i

fi(ui|wi) (25)

logp(x|A,w) = log |A|+
∑

i

log fi(ui|wi) (26)

∇A logp(x|A,w) = A−T +

[

∇ui
fi(ui|wi)

fi(ui|wi)

]

x′ (27)

∇wi
logp(x|A,w) =

∇wi
fi(ui|wi)

fi(ui|wi)
(28)

These equations can be used in a gradient-based optimization to find A and w. This approach
comes from Pearlmutter and Parra (1996).

Example: Gaussian covariance Suppose we’ve observed vectors xi independently sampled
from a zero-mean Gaussian distribution, i.e.

p(x|Σ) =
1

(2π)d/2 |Σ|1/2
exp(−

1

2
x′Σ−1x)

We want to determine the most likely covariance matrix Σ, keeping in mind that the solution
must be symmetric. Maximizing the log-likelihood gives:

∑

i

logp(xi|Σ) =
∑

i

(−(d/2) log(2π)− (1/2) log |Σ| −
1

2
xi

′Σ−1xi) (29)

d

dΣ
=

∑

i

(−Σ−1 + Σ−1xixi
′Σ−1 −

1

2
((−Σ−1 + Σ−1xixi

′Σ−1) ◦ I)) = 0 (30)

Σ = (
∑

i

xixi
′)/(

∑

i

1) (31)
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2 Kronecker product and vec

The Kronecker product (Lancaster and Tismenetsky, 1985) (Horn and Johnson, 1991) is

[

a11 a12
a21 a22

]

⊗B =

[

a11B a12B
a21B a22B

]

(32)

which, like ordinary matrix product, is associative and distributive but not commutative.

(A⊗B)′ = A′ ⊗B′ (33)

(A⊗B)(C⊗D) = AC⊗BD (34)

which implies (A⊗B)−1 = A−1 ⊗B−1.

If A and B are square, then the eigenvectors and eigenvalues of (A⊗B) are given by

A⊗B = VAΛAVA
−1 ⊗VBΛBVB

−1 = (VA ⊗VB)(ΛA ⊗ ΛB)(VA ⊗VB)
−1 (35)

which implies

rank(A⊗B) = rank(A)rank(B) (36)

tr(A⊗B) = tr(ΛA ⊗ ΛB) = tr(A)tr(B) (37)

|A⊗B| = |A|rank(B) |B|rank(A) (38)

Define vec(A) to be the stacked columns of A:

vec(

[

a11 a12
a21 a22

]

) =









a11
a21
a12
a22









(39)

Then the main result is
vec(ABC) = (C′ ⊗A)vec(B) (40)

Example The Lyapunov equation is

AX+XB = C (41)

(I⊗A+B′ ⊗ I)vec(X) = vec(C) (42)

which can be solved for vec(X).

The other properties of vec will be presented in the context of vec-transpose.
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3 Vec-transpose

Vec-transpose is a new operator that generalizes vec and transpose. It is essential for expressing
derivatives of Kronecker products and is also useful for expressing multilinear forms. It was
called “vector transposition” by Marimont and Wandell (1992).

Define

















a11 a12
a21 a22
a31 a32
a41 a42
a51 a52
a61 a62

















(2)

=









a11 a31 a51
a21 a41 a61
a12 a32 a52
a22 a42 a62

























a11 a12
a21 a22
a31 a32
a41 a42
a51 a52
a61 a62

















(3)

=

















a11 a41
a21 a51
a31 a61
a12 a42
a22 a52
a32 a62

















and similarly A(p) for any integer p dividing rows(A).

The basic properties are:

A(1) = A′ (43)

A(rows(A)) = vec(A) (44)

vec(A)(r) = reshape(A, r, c) (in Matlab notation) (45)

A(p)(p) = A (46)

(αA+ βB)(p) = αA(p) + βB(p) (47)

We can freely apply vec-transpose inside of a trace expression:

tr(A′B) = tr((A(p))′B(q)) (48)

assuming conformability. This generalizes tr(A′B) = vec(A)′vec(B) as well as tr(A′B) =
tr(AB′). In fact,

tr(A′B) = tr((A⋆)′B⋆) (49)

for any operator ⋆ that rearranges elements.
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We can generalize equations 33 and 40:

(A⊗B)(p) = A′ ⊗B(p) (50)

((D′ ⊗A)BC)
(p)

= (C′ ⊗A)B(p)D (51)

where p = cols(A)

We now have the tools to express the derivative of a Kronecker product:

d

dA
tr(X′(A⊗B)Y) = d

dA
tr((X(p))′((A⊗B)Y)(p))

= d
dA

tr((X(p))′(I⊗B)Y(p)A′)

= (Y(p))′(I⊗B′)X(p) (52)

where p is uniquely defined by conformability to be cols(B).

Equation 51 gives us the following rule for pulling a matrix out of nested vec-transposes:

((AB)(p)C)
(p)

= (C′ ⊗ I)AB = (A(p)C)
(p)
B (53)

This formula is useful in fitting multilinear forms (see the next section). Unlike regular transpose,

it is not true in general that (B(p)C)
(p)

= C(p)B, as we can see by setting A = I in (53).

4 Multilinear forms

Multilinear statistical models are more expressive than linear models yet still easy to use. A
multilinear form f(x,y, ..., z) is linear in each component separately, i.e.

f(..., αy1 + βy2, ...) = αf(...,y1, ...) + βf(...,y2, ...)

For example, face images can be modeled as linear in identity and linear in lighting conditions,
yielding a bilinear model (Tenenbaum and Freeman, 1997). Another example is colored objects
under colored light.

Just as every bilinear form can be written as x′Gy = (y′ ⊗ x′)vec(G), every multilinear form
can be written as (z′⊗ ...⊗y′ ⊗ ...⊗x′)vec(G) (Magnus and Neudecker, 1988) (Prasolov, 1991)
(Dodson and Poston, 1991). G is the tensor defining the form.

For example, the trilinear form

∑

ijk

Gijkxiyjzk = (z′ ⊗ y′ ⊗ x′)vec(G) = (y′ ⊗ x′)Gz = x′(Gz)(p)y

8



Thus we can express a multilinear form either with tensor products or with vec-transpose.
Matlab users have often used this kind of reshaping to manipulate higher-dimensional objects.

Just as Ax = [ c1 · · · cn ]x =
∑

i cixi, a linear combination of vectors, we can write

(Ax)(p) = ([C1
(p) · · · Cn

(p) ]x)(p) = (
∑

i

Ci
(p)xi)

(p)
=

∑

i

Cixi

which is a linear combination of matrices.

Therefore, we can think of G in the trilinear form as a three-dimensional stack of matrices. The
formula x′(Gz)(p)y says to first combine the stack according to z, then combine the columns
according to y, and finally to combine the elements according to x.

The vector-valued bilinear form is:

(y′ ⊗ x′ ⊗ I)vec(G) = (Gy)(p)x

which is the same as the scalar-valued trilinear form, except that the three-dimensional tensor
G is only being summed in two dimensions. This form was used in Marimont and Wandell
(1992) and subsequently by Tenenbaum and Freeman (1997). To fit this model to data, note
that by (53) we have

((Gy)(p)x)
(p)

= (G(p)x)
(p)
y

so given an observation and the value of y we can solve for x and vice-versa, by applying vec-
transpose to the observation. Therefore we can iterate from an initial guess until we reach a
fixed point. This method generalizes to any multilinear form. Compare this to the complex
algorithm without vec-transpose given in Magnus and Neudecker (1988).

What if G must be learned as well as x and y? In this case, we need an entire observation
matrix D = (GY)(p)X. Without loss of generality, we can assume that X and Y are orthogonal
matrices, since G can always be chosen to make this so. (This can be proven with a polar
decomposition of X and Y.) Therefore, if we know Y, we can solve for X by singular-value
decomposition of D, and vice-versa with D(p). Once X and Y have settled, it is easy to solve
for vec(G). This algorithm comes from Marimont and Wandell (1992).
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5 Hadamard product and diag

The Hadamard product is simply the product of corresponding elements:
[

a11 a12
a21 a22

]

◦

[

b11 b12
b21 b22

]

=

[

a11b11 a12b12
a21b21 a22b22

]

(54)

Schur’s product theorem (Horn and Johnson, 1991) says

A ≥ 0,B ≥ 0 ⇒ A ◦B ≥ 0 (55)

This is also true for Kronecker product (by (35)), but not for regular matrix product. To prove
it for Hadamard product, define a random vector z = x ◦ y, where x and y are independent
random vectors with covariance Σx and Σy. Then the covariance of z can be shown to be Σx◦Σy.
Since every covariance matrix is nonnegative definite, the theorem follows.

Define

diag(

[

x1

x2

]

) =

[

x1 0
0 x2

]

(56)

diag−1(

[

x1 a
b x2

]

) =

[

x1

x2

]

(57)

diag−1 is a kind of pseudoinverse because

diag−1(diag(x)) = x (58)

but
diag(diag−1(D)) = D (59)

only for diagonal D.

The basic properties are:

diag(αx+ βy) = αdiag(x) + βdiag(y) (60)

diag(x ◦ y) = diag(x) ◦ diag(y) (61)

diag(x⊗ y) = diag(x)⊗ diag(y) (62)

diag−1(A ◦B) = diag−1(A) ◦ diag−1(B) (63)

diag−1(A⊗B) = diag−1(A)⊗ diag−1(B) (64)

diag−1((A ◦B)C′) = diag−1(A(B ◦C)′) = diag−1(B(A ◦C)′) (65)

vec(A ◦B) = diag(vec(A))vec(B) (66)

Equation 66 can be used to remove all Hadamard products from an expression.
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Another way to remove Hadamard products is with the diag−1 matrix, which is the unique
matrix Rn satisfying

Rnvec(A) = diag−1(A) (67)

where A is n by n. Rn is an n×n2 matrix with orthogonal rows (each row picks out one element
of A). Some useful properties are:

R+ = R′ (pseudo-inverse is the transpose) (68)

R′x = vec(diag(x)) (69)

A ◦B = R(A⊗B)R′ (70)

These properties cause Hadamard product and diag to have a kind of duality with Kronecker
product and vec, as seen in the following table:

vec(ABC) = (C′ ⊗A)vec(B) diag−1(Adiag(x)C) = (C′ ◦A)x (71)

diag(x ◦ y ◦ z) = (z′ ⊗ x) ◦ diag(y) (72)

A useful special case of (71) is
diag−1(AB′) = (A ◦B)1 (73)

If we factor A = VΛV−1 then by (71),

diag−1(A) = (V ◦V−T)diag−1(Λ) (74)

which relates the diagonal of a matrix to its eigenvalues. Many facts about the matrix V ◦V−T

can be found in Horn and Johnson (1991).

Many identities for diag−1(A) also apply to tr(A), because

tr(A) = 1′diag−1(A) (75)

where 1 is a column vector of ones. For example, tr(Adiag(x)C) = 1′(C′◦A)x = diag−1(CA)x.

Similarly to (48) we have
x′y = tr(diag(x)′diag(y)) (76)

which allows us to compute

d

dA
x′(A ◦B)y = d

dA
tr(diag(x)′Bdiag(y)A′) =

= diag(y)B′diag(x) = B′ ◦ yx′ (77)

cf (52).
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6 Inverting partitioned matrices

If we partition P into

[

A B

C D

]

then the Schur complement of A in P (Prasolov, 1991) is

(P|A) = D−CA−1B (78)

Similarly,

(P|D) = A−BD−1C (79)

−(P|B) = C−DB−1A (if B−1 exists) (80)

−(P|C) = B−AC−1D (if C−1 exists) (81)

Define
(A|P) = (P|A)−1 (82)

Then the main result is

P−1 =

[

(D|P) −(B|P)
−(C|P) (A|P)

]

(83)

This formula still holds if all inverses are replaced by pseudo-inverses. The reader may want to
check this formula when P is a 2× 2 matrix.

Since PP−1 = I and P−1P = I, we know

A(B|P) = B(A|P) (84)

C(D|P) = D(C|P) (85)

(A|P)C = (C|P)A (86)

(B|P)D = (D|P)B (87)

These identities define (B|P) and (C|P) when B and C are singular.
Since (A|P)(D−CA−1B) = I, we know

(A|P) = D−1 + (A|P)CA−1BD−1

= D−1 + (C|P)BD−1

= D−1 +D−1C(D|P)BD−1 (88)

similarly (D|P) = A−1 +A−1B(A|P)CA−1 (89)

which are handy for rewriting (83) solely in terms of (D|P) or (A|P).

The Schur complement has the flavor of a division. Equation 84, for example, tells us that
(B|P)(P|A) = A−1B which is a kind of cancellation of P. The clearest example of this is the
formula for the determinant of P:

|P| = |(P|A)| |A| = |(P|D)| |D| (90)
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When A = I and D = I (not necessarily the same size) in (90) we get the handy formula

|I+CB| = |I+BC| (91)

for any matrices B and C.

Example Magnus and Neudecker give a formula for





A B C

B′ D 0
C′ 0 E





−1

but leave the proof

to the reader. This is easily handled using Schur complements. Define X = [B C ] and

Y =

[

D 0
0 E

]

. Then

P−1 =

[

A X

X′ Y

]

−1

=

[

(Y|P) −(X|P)
−(X|P)′ (A|P)

]

where

(Y|P) = (A−BD−1B′ −CE−1C′)−1 (92)

(X|P) = (Y|P)XY−1 (93)

= [ (Y|P)BD−1 (Y|P)CE−1 ] (94)

(A|P) = Y−1 +Y−1X′(Y|P)−1XY−1 (95)

=

[

D−1 +D−1B′(Y|P)BD−1 D−1B′(Y|P)CE−1

E−1C′(Y|P)BD−1 E−1 + E−1C′(Y|P)CE−1

]

(96)

Example: Conditioning a Gaussian density Suppose we partition a zero-mean Gaussian

random vector as

[

x

y

]

with partitioned covariance matrix K =

[

Kxx Kxy

Kyx Kyy

]

. The distribution

of x conditioned on y is p(x|y) = p(x,y)/p(y) which is proportional to the joint distribution.
Knowing that this conditional is also Gaussian, we can immediately derive its mean and variance
by dropping the terms in the joint distribution that depend on y:

p(x|y) ∝ exp(−
1

2

[

x

y

]

′
[

Kxx Kxy

Kyx Kyy

]

−1 [
x

y

]

)

∝ exp(−
1

2
x′(Kyy|K)x+ x′(Kxy|K)y)

= exp(−
1

2
x′(Kyy|K)x+ x′(Kyy|K)m) (defining m)

∝ exp(−
1

2
(x−m)′(Kyy|K)(x−m))

where the conditional mean m = (K|Kyy)(Kxy|K)y = KxyK
−1
yy y. The conditional variance is

therefore (K|Kyy) = Kxx −KxyK
−1
yy Kyx.
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7 Polar decomposition

Suppose a set of points B has been subjected to an unknown rotation and then jittered by white
Gaussian noise to give a new set of points A. What is the most likely rotation? More generally,
what unitary matrix minimizes f(U) = tr((A−UB)′(A−UB))?

Expanding f(U) gives
f(U) = tr(A′A)− 2tr(A′UB) + tr(B′B)

so the problem reduces to maximizing tr(A′UB) = tr(UBA′). Define unitary V and W and
positive diagonal S so that BA′ = VSW′. This is the singular value decomposition of BA′.
Then

tr(UBA′) = tr(UVSW′) = tr(W′UVS)
def
= tr(XS)

where X is also unitary. Since S is diagonal,

tr(XS) =
∑

i

siixii

which is maximum when xii = 1; that is, X = I. Therefore U = WV′ is the desired solution.

If B = I, this solution minimizes (A −U), i.e. it is the closest unitary matrix to an arbitrary
matrix A. This U has the property that there exists a positive definite P such that A = PU.
These two matrices are called the polar decomposition of A: U is the rotation and P is the
magnitude, exactly analogous to the decomposition of a complex number.

Scott and Longuet-Higgins (1991) used this technique to match columns in A with those in B.
Matching assumes that U is a permutation matrix, but finding U in this case is difficult. So
they first found the optimal unitary matrix and obtained a permutation from it.
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8 Hessians

The Hessian matrix is a matrix of second derivatives. The Hessian of a scalar function with
respect to a vector argument is

dy

dxdx′
=

[

∂y

∂xi∂xj

]

This section is based on Magnus and Neudecker (1988).

The Hessian is the derivative of the first derivative. The first derivative a(x) =
[

∂y
∂xj

]

is a row

vector function of x, and the derivative of this function with respect to x′ is a matrix

da

dx′
=

[

∂aj
∂xi

]

=

[

∂y

∂xi∂xj

]

The Hessian can also be defined by the Taylor expansion of y:

y(x+ dx) = y(x) + a′dx+
1

2
dx′Hdx+ (higher order terms) (97)

The matrix H is the Hessian, as you can check by setting all but two components of dx to zero.

The Hessian can be computed in three steps:

1. Compute the first differential

2. Compute the differential of the first differential

3. Massage the result into canonical form

The only new differential rule we need is:

d(dx) = 0 (98)

because dx is not a function of x.

The second differential has three canonical forms:

d2y = h(dx)2

d2y = dx′Hdx
d2y = dvec(X)′Hdvec(X)

where H must be symmetric.

Some of these forms require rewriting the differential in terms of dvec(X), which can be tricky.
Equation 48 is particularly helpful for introducing vec into an expression. To eliminate terms
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like vec(X′), Magnus and Neudecker (1988) define the commutation matrix Knm, which is the
permutation matrix satisfying

Knmvec(X
′) = vec(X) (99)

where X is n by m. Also,

K′

nm = K−1
nm = Kmn (100)

Examples:

d2

dvec(X)dvec(X)′
tr(X′X) = 2In2 (101)

because dtr(X′X) = 2tr(X′dX)

d2tr(X′X) = 2tr(dX′dX) = 2vec(dX)′vec(dX)

d2

dvec(X)dvec(X)′
tr(X′AX) = 2In ⊗A (102)

because dtr(X′AX) = 2tr(X′AdX)

d2tr(X′AX) = 2tr(dX′AdX) (103)

= 2vec(dX)′vec(AdX) (104)

= 2vec(dX)′(I⊗A)vec(dX) (105)

d2

dvec(X)dvec(X)′
tr(X2) = 2Knn (106)

because dtr(X2) = 2tr(XdX)

d2tr(X2) = 2tr((dX)2) = 2vec(dX′)′vec(dX)

= 2vec(dX)′Knnvec(dX)

d2

dvec(X)dvec(X)′
log |X| = −Knn(X

−T ⊗X−1) (107)

because d log |X| = tr(X−1dX)

d2 log |X| = −tr(X−1(dX)X−1dX)

= −vec(dX′)′vec(X−1(dX)X−1)

= −vec(dX′)′(X−T ⊗X−1)vec(dX)

d2

dvec(X)dvec(X)′
tr(X−1) = Knn(X

−2T ⊗X−1 +X−2 ⊗X−T) (108)

because dtr(X−1) = −tr(X−1(dX)X−1)

d2tr(X−1) = 2tr((dX)X−1(dX)X−2)
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= 2vec(dX′)′vec(X−1(dX)X−2)

= 2vec(dX′)′(X−2T ⊗X−1)vec(dX)

= vec(dX′)′(X−2T ⊗X−1 +X−2 ⊗X−T)vec(dX) (for symmetry)

Constraints Sometimes we want to compute the Hessian of a function whose argument must
be symmetric. In this case, the conversion from canonical form is

d2y = dvec(X)′Hdvec(X) ⇒ (109)

d2y

dvec(X)dvec(X)′
= (In2 +Knn − diag(vec(In)))H(In2 +Knn − diag(vec(In))) (110)

= DnD
′

nHDnD
′

n (111)

where Knn is the commutation matrix discussed earlier and Dn is defined below. Since ∂xij and
∂xji are identical, this formula adds together ∂y

∂x2

ij

, ∂y
∂xij∂xji

, ∂y
∂xji∂xij

, and ∂y
∂x2

ji

, when i 6= j. To

derive it, we make dX symmetric by substituting dX+ dX′ − (dX ◦ I) (cf (21)) and get

vec(dX) ⇒ vec(dX+ dX′ − (I ◦ dX)) (112)

= (In2 +Knn − diag(vec(In)))vec(dX) (113)

by (99) and (66).

However, we may not want the full Hessian, but only the submatrix corresponding to unique
elements of X. That is, we want d2y

dvech(X)dvech(X)′
, where vech(X) (Searle, 1982) is vec(X) with

elements above the diagonal deleted. For example,

vec(

[

a11 a12
a21 a22

]

) =









a11
a21
a12
a22









(114)

vech(

[

a11 a12
a21 a22

]

) =





a11
a21
a22



 (115)

To convert between vec(X) and vech(X), Magnus and Neudecker (1988) define the duplication

matrix Dn, which is the permutation matrix satisfying

Dnvech(X) = vec(X) (116)

where X is n by n. This leads to the rule

d2y = dvec(X)′Hdvec(X) (117)

= dvech(X)′D′

nHDndvech(X) (118)

⇒
d2y

dvech(X)dvech(X)′
= D′

nHDn (119)

Furthermore, it can be shown that the matrix In2 +Knn−diag(vec(In)) above is equal to DnD
′

n.
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Example: Hessian of a Gaussian likelihood Let l(m,V) be the logarithm of a Gaussian
likelihood at x:

l(m,V) = −
1

2
log |2πV| −

1

2
(x−m)′V−1(x−m) (120)

By (107), the first term has Hessian

1

2
DnD

′

n(V
−1 ⊗V−1)DnD

′

n (121)

where the symmetry of V has been invoked.

The differential of the second term is

(x−m)′V−1dm+
1

2
tr(V−1(x−m)(x−m)′V−1dV) (122)

and the second differential is

d2 = −dm′V−1dm− tr((dV)V−1(dm)(x−m)′V−1)

−tr((dV)V−1(x−m)(x−m)′V−1(dV)V−1) (123)

= −dm′V−1dm− vec(dV)′(V−1(x−m)⊗V−1)vec(dm)

−vec(dV)′(V−1 ⊗V−1(x−m)(x−m)′V−1)vec(dV) (124)

So the full Hessian is

d2l(m,V)

dmdm′
= −V−1 (125)

d2l(m,V)

dmdvec(V)′
= −DnD

′

n(V
−1(x−m)⊗V−1) (126)

d2l(m,V)

dvec(V)dvec(V)′
= DnD

′

n(V
−1 ⊗ (

1

2
V−1 −V−1(x−m)(x−m)′V−1))DnD

′

n (127)

And the reduced Hessian involving unique elements of V is

d2l(m,V)

dmdvech(V)′
= −D′

n(V
−1(x−m)⊗V−1) (128)

d2l(m,V)

dvech(V)dvech(V)′
= D′

n(V
−1 ⊗ (

1

2
V−1 −V−1(x−m)(x−m)′V−1))Dn (129)
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